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Abstract-With application to a horizontal chemical vapor deposition apparatus in mind, mixed convection 
and mass transfer in a horizontal rectangular duct heated from below are numerically investigated. The 
computer simulation is carried out based on the conditional Fourier spectral method recently developed 
by the authors. Unsteady flow states occurring at rather high Grashof numbers are highlighted as good 
conditions for providing the spanwise uniformities of time-averaged temperature distribution and time- 

averaged Sherwood number distribution on the substrate at the duct bottom. 

1. INTRODUCTION 

FORCED flows in a horizontal rectangular duct with 
the top wall cold, the bottom wall hot, and the side 
walls insulated or with a proper temperture have 
recently caught strong engineering attention in 
relation to the chemical vapor deposition (CVD) 

apparatus which is important in semiconductor 
manufacturing and others. Practically, chemical mat- 

ters included in carrier gas flowing in a duct are 
expected to react on a substrate set at the hot bottom 

and be deposited there to make a uniform thin 
layer. 

Although a few works [l-3] had preceded, a typical 
numerical calculation of the flows in such a duct was 

performed by Moffat and Jensen [4, 51, who solved 
the steady set of the compressible Navier-Stokes 
equation, energy equation, and concentration equa- 
tions for dilute reactants with proper chemical kinetics 
with special simplifying assumptions of pressure 
decomposition and no longitudinal diffusion of 
momentum, temperature and concentration. They 
showed the appearance of a symmetric pair of buoy- 
ancy-driven longitudinal rolls for Rayleigh numbers 
(Ra) typical in a CVD reactor, and that the sense of 
the rolls depends on the side wall temperature con- 
dition such as adiabatic or isothermal. Without the 

special assumptions described above, Nyce et al. [6] 
solved numerically the steady Boussinesq set of equa- 
tions and identified the growth of a pair of steady rolls 
in the duct with aspect ratio 2, but associated with a 

flow asymmetry with respect to the mid-width plane 
or even unsteadiness for a smaller Reynolds number 
(Re) at a fixed Ra. They concluded that the mixed 
flow must not be parabolic, as Moffat and Jensen 
assumed, but elliptic. On the other hand, Evans and 
Greif [7] solved numerically the time-dependent set of 
the compressible Navier-Stokes equation and energy 
equation to find the occurrence of travelling waves in 
the mixed flow for a larger Grashof number (Gr), i.e. 

a smaller Re’/Gr, and predicted a positive effect of the 
interaction of transverse, travelling waves and longi- 
tudinal rolls on CVD, even though how positive it 
would be remained still a question. 

It is important in this situation to recall the exper- 

iments of Mori and Koizumi [8], Koizumi and Hoso- 
kawa [9], and Mori et al. [lo], which showed that the 
longitudinal rolls at a fully developed flow state in a 
duct could be controlled by the side wall temperature 
profile and even destroyed into an unsteady chaotic 

state so that the time-averaged temperature in the duct 
became spanwise uniform. It is now known [l l] that 
the naphthalene evaporation as a reverse phenom- 
enon of CVD can occur very uniformly over time in 

this chaotic state of the mixed flow, while it cannot in 
the steady state with the rolls; there was no clear 
difference detected in the roughness (or ruggedness) 
of the naphthalene surface after evaporation between 
the steady and the unsteady flow case, so that any 
striation on the CVD surface which may be appre- 
hended would not occur due to the flow unsteadiness 
of this degree. A main motivation of the present 
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NOMENCLATURE 

concentration field of a dilute reactant 
normalized by its saturation 
concentration at the bottom temperture 
basic dimensionless concentration field 

c- cu 
equivalent hydraulic diameter [m] 
unit vectors in the x and z directions, 

respectively 
unit vectors orthogonal to k in 

wavenumber space 

acceleration of gravity [m s-~ ‘1 
Grashof number (based on De) 

wavenumber vector 
k, k,, k,., k; magnitude and x-, y-, and 

-_-components of k 

L,, L,., L; longitudinal, spanwise, and 
vertical side-lengths of the computational 
space 

I (k:‘+k;)“’ 

Nu Nusselt number 
n,, n,., n; integers 
P dimensionless pressure field 

P” basic dimensionless pressure field 

P P-P, 

Pr Prandtl number 

Ra Rayleigh number 
Re Reynolds number 

SC 
Sh 

T 

T,> T,, 

Schmidt number 
Sherwood number 
absolute temperature field [K] 

values of Tat the top and the bottom 
wall, respectively [K] 
time variable normalized by De/U, 

velocity field normalized by UA 
average speed of the forced flow [m s ‘1 
basic dimensionless velocity field 

U - uOe, 
z-component of u 

solenoidal components of u 

(X, )‘. :) 
longitudinal, spanwise, and vertical 

coordinates normalized by De. 

Greek symbols 

P thermal expansion coefficient of gas [Km ‘1 

0 dimensionless temperature field, 

(T- T,)I(T,- T,) - l/2 
00 basic dimensionless temperature field 
0 
BW 

profile of 0 at the side walls 
O-0, 

K thermal diffusivity of gas [m’ s- ‘1 
V kinematic viscosity of gas [m’ s- ‘1 

PO density of the gas at the reference level, 
z = 0 [kg mm’]. 

research is to identify this interesting phenomenon of 
heat and mass transfer in a numerical way. 

If chaos or turbulence is included, the method of 
solution of the time-dependent set of basic equations 
should be accurate enough. On this point, a spectral 
method is superior to any finite-difference method. 
However, the well known Chebyshev spectral method is 
unpioneered as yet, so much as to be applied to such 
a three-dimensional (3D) duct problem as treated 
here. Therefore, we adopt the conditional Fourier 
spectral method recently developed by the authors 
[12-141 to solve the basic equations mainly with 
32x 64x 32 modes. This resolution is barely fine 
enough to treat a strong turbulence but able to inves- 
tigate a pre-turbulent chaos in which very high wave- 

number modes are not excited. (If a finer resolution 
like 128’ is available, a strongly turbulent flow can 
be extensively treated [13].) The Boussinesq set of 
equations is used here as a first tool. Of course, it may 
be imperfect for describing reality, but we can get a 
characteristic feature of the unstable mixed flows even 
if not offering a perfect accord of numerical results 
with experiment. In this work, we take the aspect ratio 
of the infinitely long horizontal duct as 2, Re = 220, 
Prandtl number (Pr) = 0.71, and Schmidt number 
(SC) = 2.5, which is close to the CVD condition of 
GaAs in accordance with the above-described exper- 

iment [8-lo], and change Gr up to 4.8 x 106. Mainly, 
the side walls are assumed as perfectly conducting, so 
that the temperature there changes linearly from top 

to bottom. The condition close to this was covered 
by the experiment. The supercomputers used are 
FACOM VP-400 and -2600 at the National Aerospace 
Laboratory (Japan). 

2. FORMULATION 

2.1. The Boussinesq set of equations 

As shown in Fig. 1, we take x E [0, L,] in the hori- 
zontal forced-flow direction, y E [-IL,,, L,,] spanwise, 
and z E [- L,, L,] in the vertical direction. The Bous- 

FIG. 1. Configuration of the horizontal rectangular duct. 
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sinesq set of equations for the dimensionless velocity 
vector U and temperature 0 in our system is 

DU/Dt = -VP+(l/Re)AU+(Gr/Re2)0e, (1) 

div U = 0 (2) 

DO/Dt = l/(Pr Re)AO. (3) 

Here, D/Dt denotes the substantive time-derivative; 
length is normalized by the equivalent hydraulic diam- 
eter of the duct De, and velocity by the average speed 
of the forced flow U,,. The parameters are defined as 
Re = U,De/v, Gr = gb(T,,- T,)De’/v’ and Pr = V/K. 
0 is related to the real absolute temperature T as 

0 = (T-T,)/(T,-T,)-l/2 (4) 

so that the reference point of gas density p0 is taken 
in the middle plane of the duct (z = 0). 

The boundary conditions for U and 0 are 

U(x, f L,/2, z) = U(x, y, * LJ2) = 0 (5) 

0(x, f L,/2,2) = O,(z), 0(x, y, L;/2) = -l/2, 

0(x, y, - LJ2) = l/2 (6) 

where 0, is the prescribed profile of the side wall 
temperature. Both the velocity and temperature fields 
are assumed to be periodic in x with period L,, as 
usually done in spectral methods. We introduce the 
steady basic fields UO(y, z) and O,,(y, z) that satisfy 

0 = -dP,/dx+(1/Re)(~2/t?y2+~2/~z2)U0 (7) 

0 = @‘jay’ +a2/az2)Oo (8) 

subject to equations (5) and (6) respectively, and 
consider the new fields : u = U- U,e,, p = P-P,, 
and 0 = O-O,,. U0 is known together with P, [15], 
and O0 is easy to solve for. Thus, we have 

au/at = -Vp+(l/Re)Au-U, au/ax-u*V(U,e,+u) 

+ (Gr/Re2)(0, +B)e, (9) 

div u = 0 (10) 

atI/& = l/(Pr Re)AfI-U, aQ/ax-u*V(@,+@). (11) 

Since U0 and O,, satisfy equations (5) and (6), the 
boundary conditions for u and 8 are simply that both 
of them vanish on all the walls of the duct. 

2.2. Concentration equation 

When a dilute reactant in the gas exists for CVD, 
we have a single concentration equation for the reac- 
tant in the same form as equation (3) with Schmidt 
number (SC) in place of Pr, assuming that it is a 
passive scalar. We treat the dimensionless con- 
centration C normalized by the saturation value at 
the bottom temperature. In this case, the boundary 
condition is 

acjay(x, * ~,/2,~) = ac/az(x,y, ~,/2) = 0, 

C(x, y, - LJ2) = 0 (12) 

on the basis of fast reaction on the substrate. In order 

to guarantee the steady existence of the reactant in 
the flow, a nontrivial basic field Co is introduced, 
which satisfies 

0 = (a2/a2+a2ja2)co. (13) 

Then, the equation for c = C- C0 is similar to equa- 
tion (1 l), but with the boundary condition (12) and 
the periodicity in [0, L,]. The solution of (13) with 
(12) is taken here as 

C,(X,Z) = (4/~)~~=~]1/(2m+ 1)] 

x sin [(2m + l)n(z+ LJ2)/(2L,)l 

x exp [ - (2m + l)nx/(2LJ] (14) 

which means that the basic density distribution of the 
reactant is uniform as 1 at the cross-section x = 0 and 
exponentially decays downstream. 

Finally, it may be noted that the present for- 
mulation can be used for the concentration of an 
evaporated matter from the bottom surface by reading 
C and CD as 1 - C and 1 -Co, respectively. 

3. METHOD OF SOLUTION 

3.1. Fourier transformation 

The Fourier spectral method is most convenient for 
the case when the space in question is rectangular, 
though it needs a special care of the boundary con- 
dition of treated fields. Let us consider the trans- 
formation 

u(x, t) = b(k, t) exp (ik - x) (15) 

0(x, t) = Xe(k, t) exp (ikex) (16) 

where k = (27m,/L,, 2y,/L,, 27m,/L,), and n,, nv, 
and n, are integers. Hence we can easily obtain the 
Fourier transform of equations (9) (lo), and (11). 
The nonlinear convolution terms in it can be cal- 
culated as the Fourier transforms of products of the 
relevant fields in the physical space, in which process 
the fast Fourier transformation (FFT) technique is 
indispensably used. 

On the other hand, the boundary conditions place 
the following restrictions to u and 0 : 

C,,, (- l)“.a(k, t) = 0, X,,( - l)%(k, t) = 0 (17) 

Z,,( - 1)“‘8(k, t) = 0, Z”.( - lpe(k, t) = 0. (18) 

These limit the space spanned by u(k, t) and e(k, t) 
into the special hyperplanes defined by equations (17) 
and (18). Therefore, to solve the problem we have 
only to re-express u(k, t) and e(k, t) in terms of the 
complete orthogonal hypervectors in the hyperplanes, 
which are found by a multi-dimensional orthogonal 
transformation, and then to follow the new dynamics 
for these hypervectors [ 131. Such manipulations can 
be easily carried out by a supercomputer. 

3.2. SolenoidalJield representation 
A solenoidal field automatically satisfying equation 

(10) is simply constructed in the Fourier space as 



uk t) = u, (k, t)e, (k) + u2(k, t)e,(k) (1% 

e,(k) = (-l/k,k,k,/(k/).k,k,/(kl)) (20) 

e,(k) = (0, -k,/l,k,/l) (21) 

where I = (kf+ki)‘*’ and k = (k,?+k,?+ki)“2. 
Another great advantage of this representation of II is 
that the contribution of the pressure term disappears 
entirely from the momentum equation (9), since u in 
equation (19) has no component proportional to k. 
Therefore, the dynamics for (a,, u2) is much simpler 
than expected. To avoid the aliasing error in the col- 
location process, the so-called 2/3 rule is applied [I 61. 
As a result, time integration becomes very easy and a 

high-order Runge-Kutta method can be used. Here, 
the fourth-order scheme is used. (The fineness of time 
step interval is varied for each case so as to insure 
a sufficient accuracy.) It is very significant that we 

guarantee exactly the zero-divergence of u and have 
no load to calculate the pressure p at each time step, 
because we have relatively rare chances to be con- 
taminated by round-off errors. The absolute superi- 
ority in smallness of round-off errors of using spectral 
methods and FFT over all the others to solve a partial 
differential equation was well argued by Canuto et al. 
[16] ; even in the case with the pressure term involved 
as in the other spectral methods, e.g. using the Cheby- 
shev polynomial series. round-off errors influence 
only several digits of solutions and then the calcula- 
tion of double-precision is generally acceptable. 

3.3. Treatment qf’concentrationjel 
The concentration field c can be Fourier-trans- 

formed similarly to equation (16) but only with 
k, = zn,/L,, so that c is no longer periodic in 
[ - L,/2, L,/2]. The boundary condition (12) leads to 

C,,,( - l)“tk., c(k, t) = 0, X,,. exp (ixn,/2)k,c(k, t) = 0, 

C,,_ exp (- iwz,/2)c(k, t) = 0. (22) 

3.4. Other jhctors 
3.4.1. Initial condition. In order to reach a fully 

developed state in the present problem, it is necessary 
and sufficient to give a non-zero initial value to not 
all but some of u(k,O), even if 0 or c starts from 
zero. Here, normal-random initial disturbances of the 
order of 10m6 are used for the lowest 9 x 19 x 9 wave- 
number modes of II& 0) except for u(O,O) = 0. (The 
order of magnitude of this disturbance is larger than 
expected round-off errors.) There is the possibility 
to have a different final state for a different initial 
condition if there are a plural number of attractors in 
the phase space, particularly in a chaotic flow case, 
but it is out of scope here to investigate the number 
of attractors. 

3.4.2. Geometry of the duct. The aspect ratio is 
chosen as 2, and basically L, = 3?r, L,. = 1.5 and 
L, = 0.75 are taken in units of De. 

4. RESULTS 

4. I. Steudy states 
4.1. I, CUSP ofcooled side wulls. When the side walls 

are cooled just as in the work of Moffat and Jensen 

[5], the flow becomes quite steady and two-dimen- 
sional. In this case, we have 0, (z) = - l/2. The result 
for Re = 220 and Gr = 480000, which is typical as a 
CVD condition [&lo], is seen in Fig. 2. The time- 
evolution of the Fourier wave modes indicated by 

lu(k,, k,, k;)j’ is seen in Fig. 2(a). In the figure, the 24 
(note u(O,O) = 0) modes with n, = 0 are indicated by 
(originally various colours for various n,,) lines with 
various marks (for various n,) as illustrated in the 
right lattice, while all those with II, = 1 and 2 are 
indicated, respectively, by 25 black and 25 grey lines 
with no marks. (These indications will be the same for 
Figs. 4(a), 5(a)-(c), 6(a) and 8(a).) All three-dimen- 
sional (3D) modes of u disappear and only 2D modes 
with Ju(0, k,, k,)l’ survive as seen in the figure, so 
that the symmetric two longitudinal rolls are formed 
steadily as in Fig. 2(b) with a down-flow along the 
wall, and the temperature contour of 0 + l/2 in a 
cross-section is not horizontally uniform as in Fig. 
2(c). The experimental values by Mori and Koizumi 
[g] observed at the locations indicated by circles are 
inserted in the figure. This type of flow is quite insen- 
sitive to initial conditions, and maintained up to a 
much higher value of Gr. Of course, the flow is stable 
for any disturbance either bigger or smaller than 
round-off errors. 

In Fig. 3(a) is shown the Sherwood number (Sh) 
contour on the bottom wall for this case. There is a 
deep valley seen along the center-line in the substrate. 
The spanwise non-uniformity of deposition is 
obvious. We note that L, = 37~ in this figure and the 
longitudinal length is very much abridged. Sh ranges 
from 5.0 to 21.75. 

4.12. Cuse ~$‘pe@tly conducting side M.UNS. For 
Re = 220 and the wall temperature O,(Z) = --I, we 
have a steady flow in the duct when Gr is small. Both 
u and 0 extinguish for Gr less than 7837, that cor- 
responds to the critical Rayleigh number (Ru) for 
aspect ratio 2 by Lee et al. [17]. Beyond this critical 
value until Gr - 105, u and 0 evolve to reach a certain 
steady state. as is seen in Fig. 4(a) for Gr = 24 000, at 
which the steady secondary flow makes a symmetric 
pair of longitudinal convection rolls, as seen in Fig. 
4(b), and all the longitudinal modes of u with k, # 0 
are not excited at all but decay, so that the flow 
remains completely two-dimensional after an initial 
transient time. With increasing Gr, however, the con- 
stitution of modes changes, the energy of u increases 
markedly, and the temperature contour in Fig. 4(c) 
evolves from mild to boundary-layer type with steep 
gradients near the top and bottom walls. These steady 
flows are considered to be approachable by all steady 
two-dimensional methods using the Boussinesq set 
(including finite-difference method with much larger 
round-off errors). 

Here, we note an interesting fact that another pair 
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Experimental values by Mori and Koizumi [8] at various positions are added for comparison. 
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(c) That for the case in Fig. 8. 
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of rolls having the reverse senses can also appear for 
the present (antisymmetric) profile of O,(z) = -z. 
This can be understood from the antisymmetry of 
equations (9)-( 11) with respect to z : u,(z) = - u,( -2) 
and O(z) = -O( -z). This has actually been verified 

by reversing the initial value of u. Thence, this kind 
of duality of solution can be avoided only by taking 
a 0, without antisymmetry. In fact, when the side 
walls are hot or cold as compared with the inside 
average, the sense of rolls is determined so as to be 
consistent with natural convection to occur on the 
walls [18, 191. 

4.2. UnstmdJ stutes 
Here, only the case of perfectly conducting walls is 

treated. The case of cooled walls is much stabler; to 
make it unsteady, an extremely high Gr would be 
necessary. 

4.2.1. 20 unsteady states. If the initial disturbance 
field of II is limited to be two-dimensional (k, = 0). 
the same steady state as described in the preceding 
section is stable up to Gr = 4.2 x 10” for Re = 220, 
and becomes unstable at Gr = 4.25 x IO’ to oscillate 
periodically as is seen in Fig. 5(b). For Re = 90, it is 
unstable already at Gr = 4.2 x lOhas in Fig. 5(c), and 
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FIG. 5. (a) Evolution of 111(/c,, 5, k,)l’ for the case of O,(z) = --z, Re = 220, Gr = 4.2 x 10” and L, = 37 
when the initial disturbance field is limited to two-dimensional. (b) The same as (a) but for Gr = 4.25 x 106. 

(c) The same as (a) but for Re = 90. 
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then a smaller value of Re’/Gr is enough to cause an 
unsteady state. It may be noted that well-defined trav- 

elling waves occur in the 2D direction in these cases. 

Here, the importance and utility of these evol- 
utional Fourier spectrographs (EFS) should be 
stressed in studying unsteady states of the system. It 
includes all the information of the system trajectory, 
which may approach any kind of attractor including 
chaos in the phase space of u spanned by all the 
Fourier modes, except for the phase factors of the 
modes. Power spectrum as well as Lyapunov exponent 
spectrum in a few-dimensional space embedded from 
a scalar time-series data have caught people’s atten- 
tion, but none of them has so much information on 
the total system of a time-dependent field as EFS. EFS 
is useful particularly for the system with many degrees 
of freedom. Figures 2(a), 4(a) and S(a) are typical 
examples showing the access of the system to a point 
attractor. The periodic motion in Fig. 5(b) obviously 
shows the access to a limit cycle in the phase space. 
Figure 5(c) is similar, but it includes higher harmonics 
for n, = 3. If more than two modes are periodic with 
different periods out of phase, the attractor is quasi- 
periodic. If many modes make almost-periodic irregu- 
lar motions like in (the earlier part of) Fig. 6(a) and 
in (the whole) Fig. 8(a), the attractor is strange and 
the system is chaotic. Stabler looking high-energy 
modes in EFS express a large structure in the flow. 
It is possible to make a Poincaret map from EFS, but 
it is out of the scope of the present work to get into 

the details of chaos. 
However, such a 2D unsteady state as we have seen 

hardly appears in reality because a 3D unsteady state 
arising due to the longitudinal modes (k, # 0) of 
initial disturbances precedes far earlier, as is shown 
next. 

4.2.2. 30 unsteady states. In fact, with our anti- 
symmetric boundary condition (O,(z) = -z) and for 
Gr - IO’, the longitudinal modes of II, only if any of 
them are initially disturbed, begin to be excited to 
make the flow three-dimensional in an unsteady way. 
It is noteworthy here that we could hardly find a 
purely periodic (as is seen in 2D unsteady states) but 
an almost-periodic state based on interaction with 
longitudinal wave modes, even though our data was 
not exhaustive for all Gr. Figure 6(a) shows the evol- 
ution of lu(k,, k,, k,)12 for L, = 4a rather than 
L, = 3~. We may judge from this that an initial tran- 
sient motion ends at t + 5 and an almost stationary 
unsteady motion ensues until t + 80. After t = 80, 
the longitudinal modes indicated by lines with no 
marks (indicating n, = 1 or 2) begin to weaken, so 
that a two-dimensional, two-convection-roll structure 
tends to predominate. For L, much larger than 4~, 
however, a similar stationary unsteady motion con- 
tinues much longer. (The unsteady motion continued 
until t = 250 for L, = 67c.) Therefore, the case of 
Gr = 480 000 is almost marginal between stable and 
unstable, so far as it is treated within the Boussinesq 
approximation. 

Thus, the unsteady flow realized in Fig. 6(a) during 

t = 5-80 seems to be a prototype of an unsteady 
state, which would continue to occur if L, is longer. 

During this time all modes are almost-periodic irregu- 
lar, and then the system is in chaos with many degrees 
of freedom. Each wave mode is a Fourier-synthesis of 
multi-chromatic oscillations, and then various com- 
plicated travelling waves must sweep in all directions, 
in a more complicated way than Evans and Greif [7] 
described. However, the predominant wave modes 
have n,X = 1 ; that means, they have a strong possibility 
to sweep in the longitudinal direction. Figure 6(b) and 
(c) show the time-averaged (in t = 20-80) secondary 

flow and temperature contour of 0 + l/2 in a typical 
cross-section of the duct, respectively. In Fig. 6(c) are 
shown the experimental values by Mori and Koizumi 
[8] at various positions marked by symbols in the 
cross-section for comparison. A spanwise uniformity 
of time-averaged temperature is seen to be pretty 
much achieved also in this numerical simulation. Fig- 

ures 7(a) and (b) show the instantaneous secondary 
flows and temperature contours in four typical equi- 
distant cross-sections at t = 60. The time-averaged (in 

t = 20-40) Sherwood number contour for this case, 
but with L, = 37c for convenience, is seen in Fig. 3(b). 

Although the unsteady feature of flow is premature 

because of a shorter L,, the tendency of flattening the 
deposition growth spanwise can be seen. Sh ranges 
from 4.77 to 20.09 in this case. 

In Fig. 8(a) we can see the counterpart of Fig. 

6(a) for Gr = 4.8 x lo6 and L, = 37~. Obviously, the 
unsteady state lasts indefinitely, so that the system is 

more perfectly in chaos with many degrees of free- 
dom than in Fig. 6(a). The time-averaged (in t = 5& 
200) secondary flow and temperature contour are seen 
in Figs. 8(b) and (c), respectively. The flow is more 

complex and the temperature boundary layers near 
the top and bottom wall are thinner than for 
Gr = 480000. The time-averaged (in t = 2&100) 
Sherwood number contour for this case is seen in Fig. 
3(c), where the positive effect of a chaotic flow is 
clearly recognized. Sh ranges over 4.88-22.91. Here it 
is to be noted again that the pictures are much 
compressed in the longitudinal direction. 

4.2.3. Transition in Nusselt number. In Fig. 9 is 

shown the time change of the Nusselt number aver- 
aged over the whole bottom surface for various Gr at 
Re = 220, only when L, = 371 is fixed. This clarifies the 
degree of chaotic feature changing with Gr reasonably 
well in one sense, such as to be expected if L, is so 
finitely fixed. In this figure, the discussed chaotic 
nature of the flow with Gr = 480 000 is only limited in 

the initial short period, and rather its stable character 
is dominantly seen. In fact, we should know that such a 
critical stability depends strongly on the longitudinal 
spatial period L,, as described above, and the short 
period is effective for suppressing instability near the 
critical Gr. This means that the wavenumbers of pre- 
dominant longitudinal unstable modes in these dy- 
namics must be considerably low, at least within the 
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(a) 09 
FIG. 7. (a) Instantaneous secondary flows in four typical equidistant (X = 0, LJ4, LJ2, 3LJ4) cross- 
sections at t = 60 for the case presented in Fig. 6. (b) Instantaneous temperature contours in the same 

cross-sections for the same case. 

Boussinesq approximation. Therefore, if L, is 
sufficiently large, the stable or quasi-stable part of the 
Nu curve in Figs. 9(a) or (b) might disappear and 
continue to be chaotic to different degrees, although 
this fact is hardly clarified by the present capacity of 
the computer. 

4.2.4. Co~~ffr~o~ with experiment. The unsteady 
flow experimentally found by Mori and Koizumi [S] 
for Re = 220 and Gr = 480000 seems to be, at least, 
qualitatively simulated by the present calculation, 
except that the experimental flow is never marginal 
but more chaotic. The consideration of the Lyapunov 
exponent spectrum in the three-dimensional space 
composed of time-delay coordinates from the exper- 
imentally observed temperature variation at a certain 
point in the duct was previously given [9, lo]. A similar 
calculation for the corresponding flow based on the 
present Boussinesq approach indicates also the spec- 

trum of (+, +, -), although the absolute values of 
the Lyapunov exponents do not coincide in both cases 
(they are much greater in experiment). In order to get 
a more realistic simulation, we would need to treat a 
real gas beyond the Boussinesq approximation. Both 
the feature of flow instability and the structure of 
chaos are considered to be more or less changed by 
this treatment, since a chaos depends on a specific 
nonlinear structure of system dynamics. In fact, the 
critical value of Gr indicating the beginning of the 3D 
unsteadiness is considered to be lower in real flows 
than the simulated ones by the Boussinesq approxi- 
mation, judging from the comparison with exper- 
iment. A similar effect of departures from the Bous- 
sinesq approximation was recently assured in the 
Rayleigh-Benard problem by Friihlich et al. [20]. Of 
course, the antisymmetric solution described in 4.1 
will be lost outside the Boussinesq approximation. 



(a) 

(b) 

-1 I I 

100 200 3c 

t 

nx=O 
nY 

4 

9 

2 

1 

II 
01234 nz 

nx= I------ 

nx=Z------- 

SECllNDRRY FLOW 

x= l/33 
VMRX - 

RE = 
0.727%$3; TIHE - RVERACE 50.0-2oo.n 

GFi = 4800000.0 -TYPE = I 

TEHPERRTURE CONTOUR : 

x= l/33 TIME = RVERAGE 50.0-200.0 
= 4800000.0 

CH!: : O.,O%% Ciifii = O.OOOOE+OO 
LSH = o.sooo~+oo SH = 0.5003E~00 -TYPE = I 

FIG. 8. (a) Evolution of lu(k,, k,,k,)j* for the case of O,(z) = -2, Re = 220, Gr = 4.8 x IO” and L, = 3% 
(b), (c) The same as in Fig. 6. 



Mixed convective flow with mass transfer in a horizontal rectangular duct 3041 

Re = 220. Gr = 480000, @type-l 
6 6 

Re = 220, Gr = 600000, @type-l 

5 

0 100 200 300 400 500 600 0 100 200 300 400 500 600 

t t 

(a) @I 

6 
Re = 220, Gr = 960000, etype-1 

0 100 200 300 400 500 600 

t 

(cl 

Be = 220. Gr = 8 
10 

4800000, type-l 

8 

100 200 300 

t 

(4 

FIG. 9. Evolution of the Nusselt numbers averaged over the bottom for the case of O,(z) = -2, Re = 220, 
and L, = 371 for (a) Gr = 480000, (b) Gr = 600000, (c) Gr = 960000, and (d) Gr = 4.8 x 106. 

5. SUMMARY 

Such a time-dependent problem as CVD flows in a 
rectangular duct can be well treated by a present-day 
supercomputer. A general trend of fully developed 
flows in a horizontal CVD duct has been clarified 
within the Boussinesq approximation, and the three- 
dimensionality and chaotic feature of unsteady flows 
which appear for some range of Re and Gr for aspect 
ratio 2 of the duct and on a proper side wall tem- 
perature condition have been studied. These flows 
were found to have the effect of flattening the depo- 
sition growth spanwise, as really evidenced also by 
experiment, and then seem to be useful for CVD 
manufactures and others. The slight longitudinal 
negative gradient of the growth may remain to be 
another problem in CVD, but it may be practicaiiy 
solved by adding a slight longitudinal temperature 

gradient on the substrate so as to accelerate the chemi- 
cal reaction of deposition, or slightly tilting the sub- 
strate downstream so as to accelerate the flow and 
then to increase the flux of reactants. 
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